High Voltage TFT-LCD Logic Driver

The ISL24010 is a high voltage TFT-LCD logic driver with a +40 V and -20 V (momentary absolute max) output voltage swing capability. It is manufactured using the Intersil's proprietary monolithic high voltage bipolar process and is capable of driving a 3000 pF load in 500 ns .

The ISL24010 will level shift a digital input signal to an output voltage nearly equal to its output supply voltages. The ISL24010 has 3 supplies. $\mathrm{V}_{\mathrm{ON} 1}$ and $\mathrm{V}_{\mathrm{ON} 2}$ are positive supplies with a voltage range between +10 V and +40 V (absolute max). $V_{\text {OFF }}$ is the negative supply with a voltage range between -5 V and -20 V (absolute max). Outputs 1 through 6 are connected to $\mathrm{V}_{\mathrm{ON} 1}$ and $\mathrm{V}_{\mathrm{OFF}}$. Outputs 7 and 8 are connected to $\mathrm{V}_{\mathrm{ON} 2}$ and $\mathrm{V}_{\mathrm{OFF}}$. This configuration enables outputs 1 through 6 to provide slicing to the row drivers to reduce flicker, and outputs 7 and 8 to control possible supply lines. $\mathrm{V}_{\mathrm{ON} 2}$ should remain constant. It is possible to tie $\mathrm{V}_{\mathrm{ON} 1}$ and $\mathrm{V}_{\mathrm{ON} 2}$ supplies together, if independent control as described above is not desired. $\mathrm{V}_{\mathrm{ON} 2}$ is required to be greater than or equal to $\mathrm{V}_{\mathrm{ON} 1}$ at all times.

The ISL24010 is available in TSSOP-20 pin package. It is specified for operation over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial temperature range.

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE (${ }^{\circ}$ C)	PACKAGE	PKG. DWG. \#
ISL24010IVZ (See Note)	24010 IVZ	-40 to +85	20 Ld TSSOP (Pb-free)	M20.173
ISL24010IVZ-T (See Note)	24010 IVZ	-40 to +85	20 Ld TSSOP Tape and Reel (Pb-free)	M20.173

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.

Features

- 0 V to 5.5 V (absolute max) Input Voltage Range
- +40V and -20V (momentary absolute max) Output Voltage Range
- 10 mA Output Continuous Current (all 8 channels)
- 25 mA Output Peak Current (all 8 channels)
- Rise/Fall Times $150 \mathrm{~ns} / 210 \mathrm{~ns}$
- Propagation Delay 250ns
- 50kHz Input Logic Frequency
- 20 Ld TSSOP Pb-Free Plus Anneal (RoHS Compliant)

Applications

- TFT-LCD panels

Pinout

Functional Diagram


```
Absolute Maximum Ratings \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\)
Driver Positive Supply Voltage Range, (V \(\mathrm{V}_{\mathrm{ON}}\) ) \(\ldots \ldots . . .+5 \mathrm{~V}\) to +40 V
Power Supply Voltage Range, ( \(\mathrm{V}_{\text {ON }}\) to \(\mathrm{V}_{\text {OFF }}\) ) . . . . . . +10 V to +60 V
Negative Supply Voltage Range, (VOFF). . . . . . . . . . . . . -20 V to -5 V
Supply Turn-on Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 10V/ \(\mu \mathrm{s}\)
Input Voltage Range, All Inputs . . . . . . . . . . . . . . . . . . - 0.5 V to 5.5 V
Output Voltage Range, All Outputs . . . . . V VFF -0.5 V to \(\mathrm{V}_{\mathrm{ON}}+0.5 \mathrm{~V}\)
```


Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
20 Ld TSSOP Package	140
lout (continuous, all 8 channels)	80 mA
T AMBIENT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TJunction	$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Tstorage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $\theta_{J A}$ is measured with the component mounted on a HIGH effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad \mathrm{V}_{\mathrm{ON}}=22 \mathrm{~V}, \mathrm{~V}_{\text {OFF }}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Unless Otherwise Specified. Typical values tested at $25^{\circ} \mathrm{C}$

PARAMETER	DESCRIPTION	CONDITION	MIN	TYP	MAX	UNIT
Power Supplies	Recommended Operating Voltages		$\begin{gathered} -5 \\ \left(\mathrm{~V}_{\mathrm{OFF}}\right) \end{gathered}$		$\begin{gathered} 22 \\ \left(\mathrm{~V}_{\mathrm{ON}}\right) \end{gathered}$	V
$\mathrm{l}\left(\mathrm{V}_{\mathrm{ON}}\right)$	Supply Current	All Inputs low or high No load $\mathrm{V}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{ON} 1}+\mathrm{V}_{\mathrm{ON} 2}$		1.8	4.0	mA
I (V VFF)	Supply Current	All Inputs low or high No load	-4.0	-1.8		mA
1 IN	Input Leakage	Each Input low or high $\text { High }=1.8 \mathrm{~V} \text {, Low }=0.8 \mathrm{~V}$	-8.0	± 2.0	8.0	$\mu \mathrm{A}$
VOH	High Level Output Voltage	$\begin{aligned} & \mathrm{IOH}=-100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{ON}}=22 \mathrm{~V} \\ & \mathrm{RL}=100 \mathrm{pF} \text { in parallel with } 5 \mathrm{k} \Omega \end{aligned}$	($\mathrm{V}_{\text {ON }}-1.5 \mathrm{~V}$)	21.2		V
VOL	Low Level Output Voltage	$\begin{aligned} & \mathrm{IOH}=+100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{OFF}}=-5 \mathrm{~V} \\ & \mathrm{RL}=100 \mathrm{pF} \text { in parallel with } 5 \mathrm{k} \Omega \end{aligned}$		-4.3	$\left(\mathrm{V}_{\text {OFF }}+1.5 \mathrm{~V}\right)$	V
VIH	High Level Input Voltage		1.8			V
VIL	Low Level Input Voltage				0.8	V
tplh	Low to High Prop Delay	50% to 50%, Tested with $R \mathrm{~L}=100 \mathrm{pF}$ in parallel with $5 \mathrm{k} \Omega$, $\mathrm{f}=50 \mathrm{kHz}$		300	500	ns
tphl	High to Low Prop Delay	$\begin{aligned} & \text { Measured at } 50 \% \text { to } 50 \% \\ & f=50 \mathrm{kHz} \\ & R L=100 \mathrm{pF} \text { in parallel with } 5 \mathrm{k} \Omega \text {, } \end{aligned}$		250	500	ns
ttlh	Rise Time	$\begin{aligned} & \text { Measured at } 10 \% \text { to } 90 \% \\ & \mathrm{f}=50 \mathrm{kHz} \\ & \mathrm{RL}=100 \mathrm{pF} \text { in parallel with } 5 \mathrm{k} \Omega \end{aligned}$		150	500	ns
tthl	Fall Time	$\begin{aligned} & \text { Measured at } 10 \% \text { to } 90 \% \\ & f=50 \mathrm{kHz} \\ & \mathrm{RL}=100 \mathrm{pF} \text { in parallel with } 5 \mathrm{k} \Omega \end{aligned}$		210	500	ns

Pin Descriptions

PIN NUMBER TSSOP-20	PIN NAME	EQUIVALENT CIRCUIT	DESCRIPTION
1	GND	4	Ground pin
2	IN1	1	Level shifter input 1
3	IN2	1	Level shifter input 2
4	IN3	1	Level shifter input 3
5	IN4	1	Level shifter input 4
6	IN5	1	Level shifter input 5
7	IN6	1	Level shifter input 6
8	IN7	1	Level shifter input 7
9	IN8	1	Level shifter input 8
10	VOFF	4	Negative output supply for all channels
11	VON2	4	Positive output supply for channels 7 and $8 . \mathrm{V}_{\mathrm{ON} 2}$ is required to be greater than or equal to Von1.
12	OUT8	3	Lever shifter output 8
13	OUT7	3	Lever shifter output 7
14	OUT6	2	Lever shifter output 6
15	OUT5	2	Lever shifter output 5
16	OUT4	2	Lever shifter output 4
17	OUT3	2	Lever shifter output 3
18	OUT2	2	Lever shifter output 2
19	OUT1	2	Lever shifter output 1
20	VON1	4	Positive output supply for channels 1 through $6 . \mathrm{V}_{\mathrm{ON} 1}$ is required to be less than or equal to Von2.

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output load parallel $\mathrm{RC}(\mathrm{RL}=5 \mathrm{~K} \Omega, C L=100 \mathrm{pF})$ unless otherwise specified.

FIGURE 1. SUPPLY CURRENT vs FREQUENCY 1 CHANNEL TOGGELING

FIGURE 3. SUPPLY CURRENT vS FREQUENCY 6 CHANNELS TOGGLING

FIGURE 5. RISE TIME, FALL TIME AND PROP DELAY vs $\mathrm{V}_{\mathrm{ON} 1} \& \mathrm{~V}_{\mathrm{ON} 2}$ VOLTAGE WITH $\mathrm{V}_{\mathrm{OFF}}=-5 \mathrm{~V}$

FIGURE 2. SUPPLY CURRENT vs FREQUENCY 4 CHANNELS TOGGELING

FIGURE 4. SUPPLY CURRENT vs FREQUENCY 8 CHANNELS TOGGLING

FIGURE 6. RISE TIME, FALL TIME AND PROP DELAY vs $\mathrm{V}_{\text {ON } 1} \& \mathrm{~V}_{\text {ON } 2}$ VOLTAGE WITH $\mathrm{V}_{\text {OFF }}=-20 \mathrm{~V}$

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output load parallel $\mathrm{RC}(\mathrm{RL}=5 \mathrm{k} \Omega, C L=100 \mathrm{pF})$ unless otherwise specified. (Continued)

FIGURE 7. RISE TIME vs CAPACITANCE vs SUPPLY VOLTAGE WITH V ${ }_{\text {OFF }}=-5 \mathrm{~V}$

FIGURE 9. FALL TIME vs CAPACITANCE vs SUPPLY VOLTAGE WITH V ${ }_{\text {OFF }}=\mathbf{- 5 V}$

FIGURE 11. PROP DELAY vs CAPACITANCE vs SUPPLY VOLTAGE WITH V

FIGURE 8. RISE TIME vs CAPACITANCE vs SUPPLY VOLTAGE WITH $V_{\text {OFF }}=-20 \mathrm{~V}$

FIGURE 10. FALL TIME vs CAPACITANCE vs SUPPLY VOLTAGE WITH VOFF $=\mathbf{- 2 0 V}$

FIGURE 12. PROP DELAY vs CAPACITANCE vs SUPPLY VOLTAGE WITH VOFF $=-20 \mathrm{~V}$

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output load parallel RC ($\mathrm{RL}=5 \mathrm{~K} \Omega, \mathrm{CL}=100 \mathrm{pF}$) unless otherwise specified. (Continued)

FIGURE 13. TRANSIENT RESPONSE vs LOAD CAPACITANCE

Application Information

General

The ISL24010 is an Octal voltage level shifter. The part was designed to level shifts a digital input signal to +22 V and -5 V for TFT-LCD displays. The device is capable of level shifting a CMOS logic signal between +40 V and -20 V .

Power Supply Decoupling

The ISL24010 requires a $0.1 \mu \mathrm{~F}$ decoupling capacitor as close to the $\mathrm{V}_{\mathrm{ON} 1}, \mathrm{~V}_{\mathrm{ON} 2}$ and $\mathrm{V}_{\mathrm{OFF}}$ power supply pins for a large load equal to $5 \mathrm{k} \Omega$ in parallel with 100 pF (Figure 16). This will deduce any dv/dt between the different supplies and prevent the internal ESD clamp from turning on and damaging the part.

Power Supply Sequence

The ISL24010 requires that $\mathrm{V}_{\text {ON2 }}$ be greater than or equal to $\mathrm{V}_{\mathrm{ON} 1}$ at all times. Therefore, if $\mathrm{V}_{\mathrm{ON} 1}$ and Von 2 are different supplies, then $\mathrm{V}_{\mathrm{ON} 2}$ needs to be turned on before $\mathrm{V}_{\mathrm{ON} 1}$. The reason for this requirement is shown in Circuit 4 in the Pin Description Table. The ESD protection diode between $\mathrm{V}_{\mathrm{ON} 2}$ and Von 1 will forward bias if $\mathrm{V}_{\mathrm{ON} 1}$ becomes a diode drop greater than $\mathrm{V}_{\mathrm{ON} 2}$. Recommended power supply sequence: $\mathrm{V}_{\mathrm{ON} 2}, \mathrm{~V}_{\mathrm{ON} 1}, \mathrm{~V}_{\mathrm{OFF}}$ then input logic signals.
The ESD protection scheme is based on diodes from the pins to the $\mathrm{V}_{\mathrm{ON} 2}$ supply and a dV/dt- triggered clamp. This $\mathrm{dV} / \mathrm{dt}$ triggered clamp imposes a maximum supply turn-on slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$. This clamp will trigger if the supply powers up too fast, causing amps of current to flow. Ground and $\mathrm{V}_{\mathrm{ON} 1}$ are treated as I/O pins with this protection scheme. In applications where the $\mathrm{dV} / \mathrm{dt}$ supply ramp could exceed $10 \mathrm{~V} / \mu \mathrm{s}$, such as hot plugging, additional methods should be employed to ensure the rate of rise is not exceeded.

Latch-up Proof

The ISL24010 is manufactured in a high voltage DI process that isolates every transistor in it's own tub making the part latch-up proof.

Input Pin Connections

Unused inputs must be tied to ground. Failure to tie unused input pins to ground will result in a rail to rail oscillations on the respective output pins and higher unwanted power dissipation in the part. Under these conditions, the temperature of the part could get very hot.

Limiting the Output Current

No output short circuit current limit exists on this part. All applications need to limit the output current to less than 80 mA . Adequate thermal heat sinking of the parts is also required.

Application Diagram (TV)

FIGURE 14. TYPICAL TV APPLICATION CIRCUIT

Application Diagram (Monitor)

FIGURE 15. TYPICAL MONITOR APPLICATION CIRCUIT WITH SLICER TO REDUCE FLICKER

Test Circuit

If the output load is a series 200Ω resistor and a 3300 pF then C1, C2 and C3 can be reduced to 0.47 pF .

FIGURE 16. TEST LOAD AND TIMING DEFINITIONS

Thin Shrink Small Outline Plastic Packages (TSSOP)

NOTES:

1. These package dimensions are within allowable dimensions of JEDEC MO-153-AC, Issue E.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " D " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E1" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.15 mm (0.006 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm (0.003 inch) total in excess of "b" dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07 mm (0.0027 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. (Angles in degrees)

M20.173
20 LEAD THIN SHRINK SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.047	-	1.20	-
A1	0.002	0.006	0.05	0.15	-
A2	0.031	0.051	0.80	1.05	-
b	0.0075	0.0118	0.19	0.30	9
c	0.0035	0.0079	0.09	0.20	-
D	0.252	0.260	6.40	6.60	3
E1	0.169	0.177	4.30	4.50	4
e	0.026 BSC		0.65 BSC		-
E	0.246	0.256	6.25	6.50	-
L	0.0177	0.0295	0.45	0.75	6
N	20		20		7
α	0°	8°	0^{0}	8^{0}	-

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

